
Precise Shell Effects and Barriers from Fission Probabilities
of Neighboring Isotopes

L. Phair, L. G. Moretto, K. X. Jing1, L. Beaulieu2, D. Breus,
J. B. Elliott, T. S. Fan3, Th. Rubehn4, and G. J. Wozniak

Nuclear Science Division, Lawrence Berkeley National Laboratory,
University of California, Berkeley, California 94720

Abstract. Fission excitation functions have been measured and analyzed for a chain of neighboring compound
nuclei, from 207Po to 212Po. We present a new analysis which provides an accurate description of the fission
barriers and ground state shell effects. Estimates of the fusion cross section are also obtained. The improved
accuracy achieved in this analysis may lead to a future detailed exploration of the saddle mass surface.

The study of nuclei under extreme conditions (spin, isospin, temperature, and deformation) continues to be a major
theme of nuclear physics. Fission is a fertile testing ground of nuclei under extreme deformation for several reasons.

A fissioning nucleus allows us to explore the most extreme nuclear deformation associated with a stationary point,
well beyond that of super- or even hyper-deformation. Because the saddle configuration represents a bottleneck
in phase space, a “stationary” point at which the probability to fission is determined, it is able to sustain its own
spectroscopy. This spectroscopy manifests itself through the fission barrier, which can be thought of as a measurement
of the mass of the saddle-point shape. This is seen immediately by considering the saddle mass (M s) which is simply
the ground state mass (Mgs) plus the experimental fission barrier (B f ) [1]. Consequently, the physics describing the
saddle point mass surface should be similar to that of the ground state. For example, one should be able to explore the
shape dependence of pairing, search for shell effects at the saddle, determine the shape dependence of the Congruence
Energy (the Wigner term in the nuclear masses) [2] and the single particle level density at the saddle [3], etc.

Experimental fission barriers have also been disproportionately useful in fixing the adjustable parameters in theories
of nuclear masses and deformabilities, and thus in the determination of basic properties of the nuclear fluid and its
equation of state. The application of fission barrier measurements has also been important for the interpretation of many
nuclear processes in which alpha, beta, proton and neutron emission compete with fission. The search for superheavy
nuclei and the production of elements in astrophysical processes are examples.

Historically fission barriers have been measured anecdotally and with only moderate accuracy. The lack of precise
and systematic data measured over a wide range of excitation energy has left the expectations mentioned in the
introduction largely unfulfilled. In this work we provide new precision data, systematically measured for an isotopic
chain of Po compound nuclei, covering a large excitation energy range. We also describe a new technique for analyzing
this data which results in accurate fission barriers and ground state shell corrections.

The fission data were taken at the 88-Inch Cyclotron of the Lawrence Berkeley National Laboratory. We
measured with high precision the fission excitation functions of the neighboring polonium compound nuclei
207�208�209�210�211�212Po produced in 3He- and 4He-induced reactions on isotopically enriched lead targets (see Fig. 1).

We chose these particular reactions for several reasons. First, the shell corrections and fission barriers in the lead
region are large and thus easier to measure. Second, the light ion induced reactions have only modest amounts of
angular momentum (� 25h̄). The relevant rotational energies are � 2 MeV for a spherical shape and � 0�8 MeV for
the saddle shape of a Po nucleus with an angular momentum of 20h̄. And third, there are several stable isotopes of Pb
from which one can make clean targets. The experimental details are described in ref. [4].

The solid and open symbols in Fig. 1 represent the fission cross section data for neighboring compound nuclei. The
4He-induced reactions are shown in the left column and the 3He-induced reactions are shown in the right. In two cases
(A � 211�210), we have overlap points where the same compound nucleus was formed via two different entrance



FIGURE 1. The fission cross section (symbols) is plotted as a function of excitation energy for the indicated compound nuclei.
The dashed curve represents the first chance fission cross section. The dotted curves represent the second and higher chance fission
cross sections. The solid curve is their sum, the total fission cross section. The left column contains α-induced reactions. The right
contains 3He-induced reactions.

channels.
To determine the fission probability, we use standard transition state theory as applied in ref. [4] and calculate the

fission decay width
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where ρs is the level density at the saddle, ε is the kinetic energy associated with the fission channel, and ρ is the level
density of the compound nucleus.

The width for neutron emission (the only other exit channel assumed in our analysis) is given by
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where m denotes the neutron mass, R is the radius and ρd is the level density of the daughter nucleus after neutron
emission, g� is the spin factor (2), Bn is the neutron binding energy, and ε is the kinetic energy of the neutron.

Expanding the log of the level density in the integral and taking into account the angular momentum a fissioning
nucleus may have, Eqs. (1) and (2) can be evaluated and their ratio taken so that Γ f �Γn
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where a f and Ts denote the level density parameter and temperature at the saddle, a d and Tn denote the level density
parameter and temperature of the residual daughter after neutron emission, and E s

r and Egs
r denote the rotational energy

of the system at the saddle point and the energy of the rotating ground state. As mentioned previously, the rotational
energies are small because of the very asymmetric entrance channels. The ground state and saddle moments of inertia
were taken from Sierk [5].

For nuclei with strong shell effects, the approximation ρ�E �Bn�Egs
r � ∝ exp�2

�
ad�E�Bn�Egs

r �� becomes a
poor one. The shell effects of a nucleus affect its level density in a rather complicated way at low energies. But at



high enough excitation energies, we can use the asymptotic form ρ�E� ∝ exp�2
�

a�E�∆shell�� [6]. For the daughter
nucleus produced by neutron emission, the level density takes the asymptotic form:
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where ∆n�1
shell is the ground state shell effect of the daughter nucleus after neutron emission.

For the level density at the saddle point (ρs), the problems should be far less serious. On the one hand, the large
deformations at the saddle point imply small shell effects there. On the other hand, there is a topographic theorem
which states that the saddle masses should be close to those calculated using a macroscopic theory without shell effect
corrections at the saddle [7]. However, if this assumption is incorrect, the extracted fit parameters will reflect this.

Pairing effects also affect the level density in a manner similar to that of the shell effects. The level density is
evaluated at an energy shifted by the condensation energy ∆E c. The condensation energies are calculated separately
for protons and neutrons. For an even-even nucleus, ∆E c �
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The ground state gap parameters for protons (∆ p) and for neutrons (∆n) were chosen to be

∆p � ∆n �
12MeV�

A
� (6)

At the saddle, the gap parameter for the neutrons(∆ f
n) was taken to be ∆ f
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reproduce the ground state values (Eq. (6)) and g f
n � �3�π2��N�A�a f . A similar expression for ∆ f
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for protons using g f
p � �3�π2��Z�A�a f . Consequently, we express the condensation energy at the saddle as
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The resulting expression for Γ f �Γn is
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We further assume that the fission barrier can be broken into two parts

Bf � Bmacro�∆shell (9)

where for the macroscopic part (Bmacro) we take a scaled value of the Thomas-Fermi predictions [1], and the
microscopic part is the ground state shell correction for this nucleus.

The expression for Γ f �Γn (Eq. (8)) has four free parameters: Bmacro, ∆shell of the fissioning system, ∆n�1
shell of the 1

neutron-out daughter nucleus, and the ratio of the level density parameters a f �ad .
To make use of this description of Γ f �Γn, we write the total fission cross section as
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where σ�i�
f is the fission cross section after i neutrons have been emitted, σ l is the angular momentum distribution of

the fusion cross section (�2l�1�πλ̄2), lmax comes from the assumed fusion cross sections (crosses in Fig. 1) and P �i�
f �l�

is the fission probability after the emission of i neutrons from a compound nucleus of initial angular momentum l. The
fission probability at each “step” i and initial angular momentum l can be written as

P�i�f �l� �
1

1� Γn
Γ f
�l� i�

(11)



FIGURE 2. The fusion cross section (open circles) as described in the text extracted for the reaction 3He+207Pb is plotted as a
function of the center of mass energy. The Bass model prediction [8] is given by the solid line. The Bass model prediction for the
4He-induced reaction is given by the dotted line. The empirical fit of Eq. (12) is given by the dashed line.

FIGURE 3. The shell corrections extracted from the fission fits (solid circles) are plotted as a function of mass number. The open
circles represent the ground state shell correction estimated by Möller et al. [9]. The solid line is the macroscopic barrier extracted
from the fission fit and the dashed line is a Thomas-Fermi estimate [1]. The difference between the the macroscopic barrier Bmacro
and the shell correction ∆shell is the fission barrier Bf .

where the angular momentum dependence comes in through the rotational energy dependence of Γ f �Γn and the
“multiple-chance” energy dependence is accounted for on average by assuming that with the emission of each neutron,
the excitation energy drops by 2T �Bn.

With Eqs. (3), and (8)-(11), we are prepared to fit the fission data for a chain of neighboring isotopes.
However, a remark regarding the fusion cross sections is in order at this point. If we use the Bass model description

of the fusion cross sections and fit the fission cross sections with the method outlined above, we get reasonable fits to
the α-induced reactions, but somewhat poorer fits for the 3He-induced reactions. Since we have fission measurements
for the same compound nucleus (e.g. 210Po) produced with two different entrance channels, we can estimate the fusion
cross section for one of the channels. We have fit all the α-induced reactions and fixed the resulting fission parameters.
We then fit the 3He-induced reaction on 207Pb and varied only the fusion cross sections to obtain a perfect fit. The
resulting fusion cross sections are shown by the open circles in Fig. 2. The Bass model prediction (solid line) under-
predicts this estimate by nearly a factor of two at the highest energies, but it has the correct overall shape. In fact the
Bass model prediction for the α-induced reactions (dotted line) gives reasonably good agreement.

We have chosen to fit the fusion cross section with the following form:
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where V represents the fusion barrier, πR2 is a geometric cross section and b determines the high energy behavior of
σ0. Note that in the low energy limit (Ecm �V ), Eq. (12) goes to σ0 � πR2�1�V�Ecm� and at high energies σ0 goes
to σ0 � bEcmπR2� The resulting fit is given by the dashed line in Fig. 2. It is this fit that we have used for all of the
fusion cross sections in this report.

With this choice of fusion cross sections we are ready to proceed and fit the fission cross sections. Note that this
new fitting technique requires a self-consistent global description of the data. For example, the third chance fission for
nucleus A uses the same fission barrier as the second chance fission of nucleus A�1, which is the same barrier as first
chance fission of nucleus A�2. This global description of the fission cross sections produces remarkable results.

The total fission cross sections calculated using Eq. (10) are shown as the solid lines in Fig. 1. The dashed line
represents “first-chance” fission. The dotted lines represent second, third and higher chance fission yields.

To fit all of the systems in Fig. 1, nine free parameters were taken: one to describe the A dependence of the
macroscopic barriers, two to describe the smooth (assumed linear) dependence of the ratio a f �ad as a function of
A, and one each to describe shell correction for the 1n daughter channel for each of the fissioning systems (the shell
correction for 212Po was fixed at the Möller value [9]).

The extracted ∆shell values are shown by the solid circles in Fig. 3. The values of ∆ shell show a clear shell closure at
A� 210 �N � 126�. Furthermore, there is a remarkable agreement between the values from the present fission analysis
and those determined by Möller et al. in fitting the ground state masses [9] (open circles). The mean deviations are
smaller than 200 keV. The agreement is remarkable, especially when compared to earlier attempts [10]. In the early
attempts, the fission cross sections were fit for a single system (one compound nucleus using a first chance only
formalism) and the uncertainties were typically�1�5 MeV. The present analysis represents a vast improvement.

The extracted fission barriers are shown in Fig. 3 as a difference between the shell correction and the macroscopic
barriers. The macroscopic barrier from the fit is given by the solid line and is nearly indistinguishable from the Thomas-
Fermi prediction (solid line) [1]. With data at other fissilities, it should be possible to explore systematic changes in
the macroscopic barriers, in particular the predicted shape changes of the congruence energy [2].

The ratio a f�ad has an average value of � 1�01 with a slight dependence on A. With additional data at other values
of fissility, it should be possible to study the surface area (or fissility) dependence of a f [3].

In summary, we have reported new precision fission data, and we have demonstrated the extraction of accurate
fission barriers and ground state shell corrections with a new method of globally fitting fission data for an isotopic
chain of nuclei. An accurate description of the saddle mass configuration may open avenues that have been explored
extensively for ground state masses. For example, it may soon be possible to address pairing corrections at the saddle,
the surface area (or fissility) dependence of both the saddle level density and the macroscopic barrier, and even shell
effects at the saddle in a quantitative fashion. As more data becomes available, especially at the new radioactive beam
facilities, the techniques presented here may prove valuable for an accurate description and understanding of the fission
“saddle-mass” surface.
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